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ABSTRACT

In Ballistic Research Laboratories Memorandum Report No. 530,
"Lotto Method of Computing Kill Probability of Large Warheads",
F. G. King describes a random sampling method for determining kill
probabllities of a large warhead against an airplane. To obtain the
results the method requires a physical model, hand drawing of random
mumbers, and the use of kill probability curves for the vulnerable
components of the ailrplane.

In this report a mathematical model for the purpose eof solving
the problem on a high-speed digital computing machine is presented.
This model is based on J. von Neumann's suggestion that the airplane
be replaced by several ellipsolds resembling the fuselage, wings, and
engines. The necessary formulas for computation are derived from the
basic geometric model. '

The kill probabilities are determined by three-dimensional inte-
grals which are evalunated either by random sampling methods or by
straightforward numerical quadratures. These methods are campared
from the viewpoints of accuracy, speed, and machine storage require-
ments., Limited comparison of the results and some remarks about
applicability of more general problems are also made.

The method of generation of the pseudo-random mmbers used in
the random sampling procedures is also described in the appendix.
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I. INTRODUCTION
1.1 Description of the Problem

An airplane may be brought down by a bursting warhead by damage to
its structure by blast or by destruction by fragmnents of the warhead
casing of a sufficient number of vital components, which may include
pilots, without which the airplane could not maintain controlled flight.

When the criteria for a kill for a particular airplane are estab-
lished, using basic laws for combining probabilities, theoretically one
could get the probability of obtaining a kill on the airplane with a
particular warhead from a knowledge of the following:

a) the joint probability distribution of the burst point of
the warhead, and the velocity (speed and direction) of the missile at
burst point,

b) the velocify of the airplane at the time of burst,

¢) the probability of destruction of the structure by blast
as a function of directed distance of the missile from the alrplane,
relative velocities of the missile and airplane, wind and air den51ty
at time of burst,

d) the static distributions of fragment size, shape, weight,
and velocity at time of burst,

e) the aerodynamic drag on the fragments as a function of
the size and shape of the fragments and of the air structure at the
time of burst,

£) the probability distribution of the air structure, —

g) the location of vital components and of shielding com-
ponents on the airplane, and

h) the probability of destruction of each vital component
as a function of direction, size, shape, and striking energies of
fragnents,

Obviously, for practical considerations, such as the impossibility
of getting some of the above desired probability distributions, the
crudeness of those obtained, the arbitrariness of the definitions of
kills, the difficulty of computation and the length of time necessary
to carry out the computations, one canmot compute the probability of
such a kill exactly. Therefore, simplifying physical assumptions were
made to obtain approximate results, This is justified since the
available vulnerability data for this problem are known to at best from
ten to twenty percent and the errors of approximation in the mathematice
al work will not be as great.

7
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Therefore, in the particular problem discussed in this report it
was assumed that:

a) The missile and the airplane move in parallel, horizontal
planes and the projection of the direction of the missile on the plane
of motion of the airplane forms a line hSO off the nose of the airplane.

b) The distribution of burst po:.nt.s is a trivariate normal
distritution in Cartesian coordinates (x,y,2) with a mean (mq,m, 5. )

somewhere in the plane of the airplane and 459 off its nose in tha

direction of the approach of the missile and variances 02 1 o*g, and °§
and zero correlations. (In this problem the origin of the coordinate
system is at the center of gravity of the airplane; the x=-axis points
to the starboard; the y-axis points aft; and the z-axis points aloft. )

¢) The velocity of the missile is fixed and the velocity of
the airplane is negligible relative to the missile and fragment véloc-
itieso—m"mm——0n

d) There is a region called the "blast" region about the
airplane within which if a burst occurs there will result, with prob-
ability equal to one, a kill. Outside this region the probability of a
k111 is assumed to be a function solely of the probabilities of des-
troying individual vital components.

e) The dynamic distribution of lethal fragments is confined
to a conical region about the nose with axis coincident with the misaile’s
longitudinal axis a.nd to a region ion about the side which is bounded by
conss whose axes coincide with the missile’s Iongitudinal axis, Further-
more, it is assumed that fragments are identical in mass, size, shape,
and in resultant speed at turst and travel in straight lines after burst.
It is also assumed that the dynamic distribution of mmber of fragments
per solid angle subtended from the burst point is wniform in the regions
of fragmentation mentioned.

We remark that the assumptions a) and b) are not restrictions im-

posed by the Lottc method or by any of the methods described in this

report; they are assumptions of the particular problem sclved. The
missile could move in any other straight line path and the probability
distribution of the burst points could be different without any

serious modification of the mathematical forrmlation for the CRDVAC or
of the coding,. ‘

The assumption ¢) is not as crude as it appears in its statement,
for the relative motion of the airplane is actually considered in the
problem by a modification of the input vulnerability data. -




I.2 The Lotto Method of Solution,

A random sampling procedure for estimating the probability of
a kill of an airplane by a warhead under the assumptions a) through e)
given at the end of the previous section has been successfully used. It
is described in reports by F. G. King (2] and by Stanley Sacks and F. G.
King [1;] from which some of the introductory material in this report is
taken. :

Briefly, the procedure is as follows. A table, called a firing
record table is made; the headings of its columns include "blast", the -
names of all the vital components, and "kili". A set of three indepen~ ).n»f"’) e
dent random drawings is made from three different normal populations g d
whoSe means are Mgy My, and Mqs respectively and whose variances are
ci, crg ’ °_'2§’ respectively. This triplet determines the burst point. The
axes of the distributions do not necessarily coincide with those of the
airplane but, in general, could be brought into coincidence by a ro-.
tation., Using a scale model of the airplane, it is first determined
whether the burst is sufficiently close to the airplane to destroy its
structure by blast, If so, a one is tabulated under ™blast"; if not, a
zero is scored, Then for each vital camponent successively the proba-
bility of destroying it is determined. This probability is zero if the
component is outside the lethal fragmentation region of the missile or
if the component is shielded from the lethal fragment spray by some part
of the airplane, e.g., fuselage, wings, or engines; otherwise, this
probability is assumed to be a function solely of the distange of the
camponent from the burst and is given by graphs drawn from the vulner- .
ability data for each component. Then a random number from a uniform
population in (0,1) is drawn; if this mumber exceeds the above proba-
bility a zero is scored in the firing record teble under the heading of
~ this component; otherwise a one is scored. After this has been done for

all components a one or a zero is recorded under the column headed %kill¥.

A one indicates that ones appear either under blast or under a sufficlent
mmber of vital components of the same type which if destroyed would re-
sult in a kill; a zero indicates the negative of this. .. ’

This procedure is then repeated one hundred times using a new ran-
dom burst point each time. Ome humdredth of the total mmber of ones
in the kill column is then an estimate, in the sense of the strong law
of large mumbers of the theory of probability of a kill of the airplans -
by the warhead, This estimate, being a random variable with a binomial
.distribution, has a variance given by pq/l00 where p + g = 1 and p is
the probability of a kill, This glves a ratio of standard deviation

to mean of 0.1 v/@/p, which is between 5% and 20% when kill probabilities
is between 0.8 and 0.2. Thus the percentage random error in this methed
of camputation is comparable to, actually slightly better than, the
accuracy of the data.

Random estimates of the percentages of kills due to blast or of
kills due to the destruction of a sufficient mmber of vital components
of a given type as well as estimates of the probabilities of destroying
any particular component or combinations of components are also
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obtainable from these firing record tables, Furthermore, if the criteria
on numbers of vital camponents of any type to be destroyed to get a ldll
are changed, the probability of a kill is obtainable from the same firing
table. In addition, using several firing record tables; one is able to
estimate kill and other probabilities due 1o several missiles without
constructing new tables. 1In fact, the estimates of these probabilities
could be obtained from ome firing table but with higher variances; for k
missiles the variances would be slightly less than k times the variances
for one missile. This is so because instead of having 100 trials in the
average, there would only be 100/k trials in the average. The presence
of multiply vulnerable components actually raises the kill probability — .,
somdwhat and this lowers the expected relative error.

II, ORDVAC SOLUTION OF THE FROBLEM
II.3 The Mathematical Model.

In view of the simplifying assumptions a) through e) of I.2, the
mathematical quantity estimated by the Lotto methed is the integral

o0 o0

(3.1) I Ld§1(x) a®,(y) S £(x,¥,3) d@é(z) POIRIPE)

where £(x,y,2) is the probability that a kill has been produced (ar a
blast kill, or any particular combinatlon of vital canpgnents has been
destroyed) by a burst at (x,7,z) and d@,(x) 4@ ,(y) 4 3(z.) is the

probability that a burst occurs at (x,y,é.). By the assumption b) of

1.2, we have 2 2
? ol R 1 L IRl (:;2)?]
a®,(x) a®,(y) a 3(5) = (211)5750 e 1 2 3

19293

We shall estimate the same integral by three different methods which
will be described in II.6. Each of the three methods has in common the
same method of estimation of the integrand f(x,y,z) which, in addition
to depending on the burst point, (x,y,z), depends on the geomgtrical
representation of the airplane and the vulnerability data. -

dx dy dz.

Criteria for a gpod geocmetrical model are that

.a) it should represent the airplane, its more bulky camponents,
and the blast region fairly well,

_ b) 1t should contain only simple formulas that do not require
too many registers in the machine's internal storage and that do not take
much computing time to be evaluated,

c) it should lead to simple formulas for the regions shielded
by bulky parts of the airplane, and -
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d) it should lead to simple determinations of whethér or not
a burst is'in the blast region or a vital component is in a shielded
region,

Three models have been considered as approximations to the form of
the airplane and blast region: A set of ellipsoids to represent the
fuselage, wings, engines, and blast region; a set of spheres to represent
the above; and a set of cylinders to represent the above except the wings
which could be represented by a rectangular parallelipiped. They all
satisfy the above four criteria fairly well, The best, however, seems
to be the first; the suggestiion of J. von Neumann. It seems to satisfy
a) better than el'bher of the other two, All three models satisfy b)
equally well except that many more spheres than ellipsoids are necessary
to represent approximately the volumes in question and, therefore, require
more machine storage and computing time. All three involve only quadric
surfaces which require only a few products and sums to describe the ele-
mental surfaces and for which it involves only simple discriminations on
the sign of a quadratic or a linear form to determine whether or not a
point is enclosed by the surface. To determine the regions shielded by
bulky parts of the alrplane is more difficnlt using the third model than
for the first two. Thus, in view of these cons:l.derat:l.ons , the ellipsoeid
model was chosen.

Another modification is the replacement of volume-oceupying —
vulnerable comwtl%cmgnts, The spray regions are
“boundeéd by cones as in the Lotto method., A vital camponent in this
region is considered to be shielded by a part of the airplane represented
by an ellipsoid if it lies outside the ellipsoid and lies within the
region inside the part of the cone determined by the burst peint and the
ellipsoid which is on the other side of the ellipsoid from the burst

point. The mathematical criteria for this will be derived in the next
section.

IT.4 Derivation of Mathematical Criteria for Determining Whether or Not
a Vital Component is in the Lethal Fragment Spray.

- The probability that a vital component at a peint C is destroyed
by fragnents from a burst at a point P is zero if the component is not
in the lethal fragment spray and is a function of the distance |C - P|
if the component is in the lethal fragment spray., A vital component at
'C (See Figs 1) is assumed to be wvylnerable to fragments from a burst at
P of a missile whose unit direction vector is V at the time of burst if

it is either inside the nose spray cone I(l or outside both K'.I. and the

rear cone K, and, in addition to either of these conditions, is not

shielded or masked from the burst by some part of the airplane repre-
sented by ellipsoids, one of which is represented in Fig, 1 by B. I£f C
is inside E it is still considered wulnerable if it is in the spray
regions arnd not shielded by another ellipsoid, (Perhaps a better
assumption would be that if C is inside E it is vulnerable only if-it
is on the same side of the polar plane of P with respect to E as P,
However, the way in which the data for the kill probabilities as a
function of digtance are gathered and averaged militates against this.)
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Fig. 1 represents a dynamic diagram and, therefore, the angle P is
greater than the angle a bscause the mamentum of the missile is added to
the momentum of the fragments acquired in the burst.

To obtain the mathematical criteria for determining whether a
vital component is or is not in the lethal fragment spray we need the
eqations for the ¢ones K, K,, a.nd{Kg},_ which we shall derive directly
from vector considerations. -7

A point X = (xl, Xas x3) 15 on sither nappe of the cone Ki, one of

whose nappes is represented in Fig, 1 if X= R

- o

. *_L 2 “ w;"( 2
K () = [(X - P) V] = |X - P cos” @ =o0.

It is outside the nappes of the cone if the quadratic form Kl(I) is
positive and it is inside if K1(_x) is negative, Similarly, a point X
is on either nappe of the come K,; is cutside the nappes of Kz-, or is
inside the nappes of K, according as the quadratic form

K, (X) = [(x = P) o v_'fz - |X - Pl2 cos? B

is zero, is positive, or is negative, respectively.

A point Y ¢ P is on the coneK »)the cone determined by the pencil
of 1lines through the burst.point P afid tangent to_the shielding ellip-

5014 E, If and only if the line through P and Y is one of these tangent
lines. To express this mathematically, let us assume for the while that
R the center of the ellipsoid E is also the origin of our coordinate

system, and let X = (xy, x,, x3)' bs a point on the ellipsoid E whose
equation in this system is A :

where X° is’ the transpose of the row vector X and

r h
1
: 0 0
a2
1
A= 0 0
.
Lo o )
(o]



in which a, b, and ¢ are the principal semi-axes of the ellipsoid E.
If X is a point on E and t is a parameter, then

(4e3) __ YeP (l-t) +t X

is the equation of a line thréugh P and X, Now ¥ 1s on the ellipseid
E if | ‘

[P-t) + t x]A [P(1-t) + t X]T =1

ar, since A is symmetric, :

(Loh)  2(PAPT - 2 PAXT + XAXT) + 2t(PAXT - PAPT) + (PAP® - 1) = 0,

Now Y is a tangent point on E if and only if there is a unique %
gatisfying (Lok), ises, if

2
(PAXY « PAPT) < (PAPY - 2 PAXY

+ XAXT) (PAP® = 1) = 0,
which when expanded and rearranged yields
W) (Pax® - 1)2 - (AP’ - 1) (xaxT = 1) = 0.
But since X is on E (L4.5) reduces to A
‘ T
(4o6) PAX” = 1,
This means that X must lie on the polar plane .of P with respect to B.
To cbtain the equation of the cone K, (Obviously, Pmust be outside E

for E4 to be a real cone.), we let the parameter t in (L.3) range over.

the real mmbers and the variable point X range over the ellipse deter-

mined by the ellipsoid E and the polar plane of P with respect to E.

To determine the equation of this cone in non~parametric form we elimin-

;t.e g and t between (4.2), (L4e3), and (L.6) for t g 0, since t = O ylelds
= s .

Letting t § 0 and solving (4.3) for X, we obtain
(4eT) X=P+3(X-P)
which we substitute in (L.2) to get

(4o8) PAPT+%m(I-f?T+:12(I-p)A(I-P)T-1.

12



Substituting (4e7) in(4.6), we obtain

(449) PAPT + %— FA (Y - p)T

Subtracting (4.9) from (4.8) and mltiplying the result by t, we have
(4.10) PA(T-P) +3(xT-P)a(@-P =0

Eliminating 1/t between (L4.$) and (4.10), we arrive at
Ml (r-PA@-P -[mE-mP-a-naE-n=0
Expanding this and using the symmetry of A, we have

T

2
PAPT TAY® - 2 PAPT PAYT + (PAPY)

2 2
- (PAYT)" + 2 PATT PAPT = (PAPY)

- YAYT + 2 PAYT - PAPT

(PAPT - 1) (TAY® - 1) ~ (PAYT - 1)2 =0

for the equation of the cone K3.
i

Thus a point X is on either nappe oi‘ cutside the nappes of
Kzs or is inside the nappes of K, according™as the quadratic form
2
(Lo11) Ry(%) = (PAPT - 1) (xax” - 1) - (Pax” - 1)

is zero, is positive, or is negative respectively. For each shielding
ellipsoid there is a different matrix A; therefore, we have a set of
quadratic forms of the type of K3. If there are K shielding ellipsoids,
Ek, let us call their respective matrices A’k’ k=®l, 2, aeoy, K; and the
quadratic forms associated with the cone determined by P and the k-th
ellipscid will be designated by K3 K Thus

(4e12) K3,k(x) = (PA.EPT -1) (nkx -1) - (mkxT - 1)2.

It should be recalled that the origin of the coordinate system in the
formla is Rk the center of Ek and that the quantities P and X .are

usually measured relative to the center of gravity of the airplane.
Therefore t.he appropriate translations should be made before using the
formula ([; We return now to our original reference coordinate
system with its origin at the center of gravity of the airplane.

13



The fragment spray kill probability for each component is assumed
to be different in the nose-spray region (inside Kl) from that in the
side~spray region (outside K, and K,) but is assumed to be uniform with
respect to the angle subtended from V (See Fig. 1.) in each region. If
the point representing a particular component falls in the nose-spray
region and is not shielded by any ellipsoid Ek' let us call the procedure
of computing the probability of destruction or the component by frag-
nments procedure A; if the component falls in the side spray region and

is unshielded, the corresponding procedure will be called procedure B;
and if the component falls inside the rear cone, K2 or is shielded, the

corresponding procedure (which is simply recording a zero) will be
called procedure C,

The logical steps to determine the choice of the appropriate one of

' the above procedures are as follows. First the scalar product (C = P) - V
is formed, If this is positive then the component C lies on the same

side of the equatorial plane of the missile at burst as the direction
vector of the missile points; if (C - P) o V is negative then C is on the
other side of the equatorial plane.

If (C - P) » V>0, then the component C is either in the nose
spray region or side spray region, and it is next determined whether it
is shielded by one or more of the ellipsoids Ek-" the logic of which

determination will be outlined later, If the component is shielded, we
pass on to apply procedure C. If it is not shielded, then Kl(C) is

formed., If I!Ll(c)< 0, procedure A is applied since C is then in the
nose spray and is vulnerable. If Kl(-c) 2 0, then € is in the side
spray region and procedurs B is to be followed.

If {(C -« P) = Y€ 0, then C is either in the side spray region or

in the rear cone region of no fragment spray., In order to determine in
which of these two regions C lies, Kz(c) is formed; if K2(0)< 0, C is

in the no spray regiom and procedure C is applied; if K,(C) =0, it is

next determined whether C is shielded or not., If C is shielded, pro-
cedure C is then applicable, and if C is unshielded, we go on to app
procedure B, .

When C is In a spray region, in order to determine whether it is
shielded or not the subsequent logical procedure i1s followed. Re-
calling that the center of the k-th shielding elliposid Ek is B’k’

k=1, 2, eeo, Ky wo fom (P-R) A(C-R)T 1, Ir
(P - Rk) Ak(c - R.k)T - 1< 0, then P and C are on opposite sides of-
the polar plane of P with respect to the ellipsoid Ek and we form

%5 @ = [(e-r) a e P [(0-r) s er)? 1] - [(ry) ator)’ =

1



If K (C)< 0y C is inside the cone X and we form

3,k
(C—-Rks A, (c-ak) -1, If (C-B.k) A (c-ak)T - 1> 0, then C lies out=-
gide the ellipsoid Ek’ but, as a result of previous discriminations, it
is found to be inside K Sk and on the opposite side from P of the polar

plane of P with respect to B, . Hence C is shielded and we pass on to the
procedurse C.

On the other hand, if (P—Rk) A (C-Rk) =120, or if
P-Rk) o (c-nk - 1<0 and K3 k(c)> 0, or if (P—-Rk) A (C-Rk)T -1le0,

(C—)-cO and- (C-R )Ak (G—Rk) - 1 =0, then C is not shielded by E_

beca.use it will be on the same side as P of the polar plane of P with
respect to Ek-’ or it will be on the other side but also cutside the cone
KB’ _or it will be inside K3 K but also inside E, and thus not shielded
ok

according to our assumption., If C is then not shielded by Ek and k =< K,
k is replaced by k + 1 and the procedure is repeated. If k = K then
procedure A or B is applied depending on whether C is in the nose spray
region or the side spray region..

It should be remirked that the restriction that the matrices Ak in

(4.12) be diagonal is particular to the actual problems run on GRDVAC
but is not nacessary to the derivation of (4,12). If the shielding
ellipsoids Ek had axes which were not parallel to the coordinate axes

then the A, would not be diagonal but (4.12) would still be valid. For
airplanes with swept back wings such modifications are necessary. It
is possible that for delta wings ellipsoidal approximations are too
crude. In which case a t.riangula.r prism of very small depth could be
used with a small increase in memory requirements for the necessary
diacrzmmatlons to determine the shielded regions for each burst point-e

The logical flow chart of the application of the criteria of th:u.s
section for one component is given-in Fig. 2.

I1.5 Computation of the @ Probability for a Given Burst Point,.

The integrand f£(x,y,2) of (3.,1), which is the probability that a
kill has been produced by a burst at z,x,.y',Z), was programmed for com-
putation by two different methods. Omne method has the advantage of
being very general, but, on the hand, with our specific kill criteria
it required about seven times the computing time of the other. The
recent addition of a new order, logical "and" to the (RDVAC!s list of
instructions will by its use make the twe computing times, nearly the
same. Both methods will be described here,

The more general method will be discussed first. If there are M
vulnerable components of the airplane, then when 2 missile explodes,
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there are EM mutnally exclusive possibie events, besides blast, corres-
ponding to the destruction or non-desiruction of each of the components
01, Cry ooay G_H. Bach of the possible events may be represented by an

M
M~digit binary integer 24 B; where
1=1 '
1 if Gi is destroyed

0 if Ci is not destroyed.

Let us define a partial ordering relation, ( € ), among the M digit
binary integers such that '

Mo Mo
2 20p, (=) 2, 2y
i=1 i=}

if and only if B, €y, for each i = 1, 2, eee; Mo Lot S be the subset
of the 2M possible M-digit binary integers which represent kills. Let
5 be that subset of S such that a) if s is in § then there exists an -
element 5 in S such that 5 () s and b) if 5" is in-8" then there does

not exist another element, s, of S such that s(=<) s*. If r» i5 an M-
digit binary integer, let us define a function®(r) such that

1 if there exists an § in S such that s (<)r

€(r) = : . # y 3
0 if there does not exist an s in S such that s (<€ )r.

We remark that for €(r) = 1 it is necessary and sufficient that r be in
SQ )

The probability p;, of destruction of the component C; is, in the
problem handled, a function of the distance, D, fram the component C; to

the given burst peint (x,y,z) the density of the lethal fragment spray,
and the vulnerable area of the/c\a:q:}e'ngnt o It 13-given by

rs '-3AvD

-2

where a constant propgrtip_ng._l_;ié;—:t,be_ 'Tagment density. The vulner-
able area A, 1s cbtained from experimental data and for ORDVAC computations

was fitted by a curve composed of segments of parabolas and straight lines.
This fitting was done by W. Barkley Fritsz.
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If Py is the proba.bility of destruction of the camponent C by a

. burst at the given point tx,y,z) .and 1f r Z 21 Bi(r) then the

TS
probability, P(r) s of occurrernce of the event represented by the binary
integer, r, is given by

. X _ | |
Rr) =TT {#5() p; + [1 - g, (] - py)}

and the probability, Pp, of a kill due to fragnénts frem a burst at
(x,y,2) is given by

My
Bp= 35 €(r) P

T= 0-

This method is very general but, for the specific kill criteria
in the actual problem solved on ORDVAC a second method was also used in
which it was possible to decrsase the large mumber of operations re-
quired by avoiding the comparisons involved in the relation (<) and
reducing the total mmber of probab:.l:l.t:.es needed to compute P.. The

efficiency of the second methiod depends on the fact that in the cases
treated the set of vital components was composed of a number of dis-
joint subsets containing only components of the same type and the mumber
of any one type was small; furthermore, for each type there exists a
fixed number of vital components which rust be destroyed in order to
achieve a kill. If there are J different types and if Q is the

probability of killing at least the required number of vi'l';al components
of the type, Jj’ sufficient to produce: a ki1, then

_ T
j=1 _

Given the pfobabi:l.litie'"éi Pys since the number of components of each
type is small, the cmnputat:.on Q is very simple. For example, if Jl
contained only the components Cl and-C 29 ard if the destruction of
only one were sufficient for a kill then Q= Pq * Py = PiPpe If dq
contained only the 'c'omponents Cl, 25 a.nd_GB, and if the destruction
of only two were sufficient for a kill theén -
Gy = P1P * PyPy * PoP3 = 2pyPpP.

Finally, if P is the probability that the a:lrplane 's structure
is destroyed by blast from a burst at the given point (x,y,z), then
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the integrand of (3,1) is given by

1 if (x,y,2) is in the blast region

F(x,y,2) = Py + (l—PB) Pp

‘ P, .if (x,y,2) is not in the blast
= - ()17 ) F reg;io:’l.,

I1.6 Choices of Methods of Bvalnation of the Kill Probability Integral.

Several methods of quadrature to evaluate the kill probability
integrals given by (3.1) were considered. These methods fall into two
general classes, random sampling or Monte Carlo procedures and systematic
nmerical integration.

Criteria for choosing any method over others are usually based on
the accuracy desired in the value of the integral (3.1) on the accuracy
and speed available in the machine, and machine intermal storage require-
ments for each method, In this problem since sufficiently accurate and
sufficiently fast methods with about the same machine internal storage
requirements are available in baoth the above two general classes,
storage requirements are of minor importance in the making of choices
among the methods considered. The programs actually used occupied
nearly all of the ORDVAC storage, but, if it were necessary, the same
procedures could be coded to take a sornewhat smaller storage - about
850 or so words.

In rapdom sampling procedures since a correct statement of the
answer is that the answer is, say x with probability p, the criterion
assigning greater accuracy to a particular random sampling method than
to another usually that the first method have a smaller variance than
the secord. In choosing one sampling method over another we shall use
this criterion in addition to the criterion of speed.

Among the random. sampling integrating procedures three were given
some consideration for possible use on (RDVAC; let them be called
- RSIP-I, RSIP-II, and RSIP-IIT,

RSIP-I is the Lotto procedure described in I.2 with the mathe-
matical model given in II.3.

In RSIP-II a seqence of N points { (xn, Vs zn) I, n=1, 2, .eey N,
is chosen from a trivariate normal distribution with mean (ml, Moy 'm3) and
variance (0'1, Oy 63). Then an estimate, in the sense of the strong law
of large numbers, of the integral (3,1) is given by -

zl‘, f(xn, ne Zple

n=l



In RSTP-III a sequence of N points {(xn'_-, Ypo zn)}, n=1, 2, easy N,
is chosen from a trivariate uniform distribution in the region defined by
|xm | € Loy, \y*-mal < lo,, ]z—m I S bog.

Then an estimate, in the sense of the st.rong law of large mumbers, of the
integral (3 1) is given by

: [, st ey
- L ( )
E[("l.) *-(6_2- ) +(03 J.

3@ 'z;L 2(x_,¥02,) o

The ranges of 8o,, 80,, and 803 for the random variables x., Yys and z,

were chosen becaunse the probability mass within lw of the mean in the
univariate normal distribution is 0.9999365. Since aceuracies of
several percent in the answers are more than are necessary in this
problem, ranges of seven o's or even s8ix ¢'s could be used instead of
eight o's, In the normal distribution the probability mass within 3.5¢
of the mean is 0.999535 and it is 0.997300 within 30 of the mean,

The random number generation used in these schemes is discussed in
the Appendix.

Among the systematic numerical integrating procedures two were
considered; let them be called SNIP-I and SNIP-II. Because the
acouracy des:.red in the problem is of the order of several percent,
simple procedures are sufficient. Therefore, each of these two pro-
cedures considered were three-dimenmsional Riemarin sums,

In SNIP-T the summands are evaluated at ? points at the geometriec
centers of elemental cubes of equal volume in the physical spaces For
the same reasons expressed in the deseription of RSIP-III the reglon of
integration is restricted to

|x=ny | s voy, [3my| < 7oy, [z-my | = 7oy,
where r may be chosen as 3, 3.5, or L. The integral (3.1) is estimated
.- 2 - 2 2 -rn 2
l-[(lm}.) . (5_"2) + (_2) ]
(- f)EZﬁf(xl,y,z)ez 9 %
i=l jel k=1

where

. 24ely
X, =my = oy (1-_1 )

Iy = My = 19 (1'21'.1&)‘
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%, =My = IO (1_2%:9-_).

3 3

In SNIP-IT the summands are evalunated at L3 points at the proba-
bility mass centers of elemental cubes. of eqal probability mass in a
three-dimensional probability space whose probability mass distribution
is a trivariate normal distribution., The integral (3.1) is estimated by

k

1 L |
%] i-t; .:|§1 gl Emy + oty mp * Gty My + O3ty

where

A\ L-v
and for v €L/2

1 J‘ o ZT g L*1l-2v
2 o

II.7 Comparison of Methods of Evaluation of the Kill Probability
Integral.

In this section the methods listed in II.6 will be compared on
the basis of theoretical accuracy, speed and memory requirements.

The random sampling integrating procedures will be considered
first. ‘
If {Xi} is a sequence of independent identiéaﬂ.ly distributed

randem variables and G{x) is a function of a very general class (Baire
functions are included in this class.), then

Va.r{% li:l o)} =Lvar {ox)] a1 {Ga(xi)] 18 {oix) ).

This formula will be used to determine the respective theoretical
variances of the three random sampling integrating procedures. The re-
spective variances will be designated as Var,, Varyr, and Vary e

In RSIP-I, G(X.i) is a Bernoulli random variable which takes on the
valwe O with probability I and the value 1 with probability 1-I, where
I is the kill probability integral (3.,1). Thus
' 1
(7.13) Varp = § (1),
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In RSIP-IT, X, is a three-dimensional random variable with a tri-
variate normal distrilbution with mean equal to (ml, Moy My ) and variances

equal to (o3, o, ) ) and G(X,) = f(xi, Yy % 4)s the :|.nt.egrand in (3.1).
Therefore,

(7.1) VarI j S 2(¥) S i‘z(x,y,z) d& (z) - ]

- -0

In RSIP-IIT, X, is a three dimensional random variable with a tri-
variate uniform distribution in

]x—mll € 1oy, |y-my| € vo,, |z-m§| S ro,

where the value of r could conveniently be 3, 3.5, or L.

The R

" » 3/2 1 [("i""l)z . (Yi"“z)z . (zi‘“‘ﬂ

2r "7 Ve c, %

6(X;) = (55)  f£xg,y5,25) e 1 2 3

and
ro) d, T, 3/ 2
(7.15) Var .. = % S dal(x) S dbz(x) S (
”--.‘1"‘.’1 ~T% ’”3

-1 [”‘1) +('m2) : (MHJ

i’z(x,y,z) d§ (y) - I }

The only difference in the expressions for Va.rI and VarII is :Ln the

power of the integrand, f(x,y,z), in the first members of the right hand
sides of (7.13) and {7.14). In the former f(x,y,z) appears to the first
power, while in the latter it is squared. Hence, since f(x,y,z) is the
probability .of a kill or some other desired event from a bturst at the
point (x,y,2) and, therefore, is between zero and one, Var ;S Vary.

In the Lotto method it has been customary to choose M = 100. For
this the root mean square relative error is 0.l 'th- S?I, dnplying that
if of is a bound on the allowable root mean square relative error then

(7.26) (1 + /000 =1,
This implies, for exa.nqale, t.hat if the root mean square relative errors

are not to exceed 10% then I must not be less than 1/2; if the root
mean square errors are not to exceed 20% then I must exceed 1/5. (Of
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course, choosing M to be larger will reduce the error, so that if small
values of I are to be computed with accuracy more extensive sampling is
needed.) To test the random numbers used as well as to compare RSIP-I
and RSIP-II fifty runs of the problem were made using RSIP-II with

different and independently randomly chosen values of r, at the request

of F. G. King, The valnes of the variances cbtained for almost all of
the probabilities of kills of component cambinations indicated that
approximately 1.5 to 3.2 times as many burst points would have been re- .
quired to produce the same accuracy if RSIP-I had been used instead of
RSIP-II, For the probabilities of kills due to destruction of a
sufficient number of one particular type of vital component fram 5 to 8
times the number of burst pointe used in RSIP-IT would have been -needed to
get the same accuracy 1f one used RSIP-I., However, since these proba-
bilities are small and contribute only a little to the total probability
of a kill, great accuracy in these small probabilities i1s certainly not
necessary unless one were strongly interested in the particular com-
ponents' probability of destruction,

The difference Var, - Var.. is given from formulas (7.13) and
I II
(7.14) as oo oo )

Vary - Var =% T a®. (x) J a®,(y) s £(1-f) a P, (2).

Therefore, from this formula one sees that if most of the probability
mass is near where f£(1-f) is near its maximmm, i.e., where £ = 1/2,
then the difference Var, - Varn is of the order of Va.rI. In the case

of singly vulnerable components or multiply-vulnerable components
physically close together the bulk of the total kill probability on a
component combination is obtained from points near the components, or
near the companent combination as the case may be, where f is near.l,

The storage requirements and the computing time required for
RSIP~I is about the same for RSIP-II for the same rumber of bursts -
bacanse of the extra randomization in RSIP-I while their printing
times are identical provided that the sequences of zeros and ones which
are the outcomes of each burst in RSIP-I are not printed., On the other
hand, if these geros and ones are to be recorded as in’'the hand Lotto
method the printing time in RSIP-I is greater than in RSIP-II. Farther-
more, if the same root mean square relative error is desired in RSIP-I
as in RSIP-II, as has been pointed out, for moderate values of (3.1)
at least twice the computing time of RSIP-II is reaquired. Therefore,
on the basis of these considerations RSIP-II is reccommended by the
present authors over RSIP-I, provided that firing record tables are
not required to be printed for use in other problems.

The storage requirements for RSIP-II are slightly higher than for
RSIP-III. The camputing time required for RSIP-III is approximately 2/3
that of RSTP-~II for the same number of bursts. This is caused by the
fact that RSIP-II requires random mmbers chosen from normal distri-
butions while RSIP-III requires random numbers chosen from a uniform
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distribution and the method used on ORDVAC to produce normally distri-
buted random ‘mmbers transformed uniformly distributed random mmbers

into normally distributed randem mumbers and used a routine to compute
logarithms as part of the transformation; this routine requires a good.. -
fraction of the computing time.

However, Var;, is somewhat less than Var;... The only difference

between the first members of the right hand side of (7,14) and of (7.15)
is that in (7.15) there appears the extra factor

o, 2 2 2
. ? .3 [ +(3};l>]

(7.17) @&y o ZLlo
Forr =3 and _
. X-m, 2 y-m, 2 Zem., 2
(7.18) (-a-i—) + (—o-;-) + (_o_f) < 5,2}

this factor exceeds unity and is less than unity elsewhere. Furthermore,

fz(x,y,z) is generally larger in the region is determined by .
(7.18) than elsewhere where it is probably very small because it is th
square of the kill probability for a burst at (x,y,z) and generally de-
creases away from the origin which is not far fram the mean burst point,
certainly very much closer than 5.2k min (01,02,03). Finally, since

2 2 2
1 [,*- v, Zem )
-5 ) —) —2)
o ,2[( D S )

1 .
: dx dy d
(21()375010203 dy d»
e 2 2 gm 2
<::1> +(%—> +(§:1> > 5.2l

(e
" (2n)? °

2 +yt+a » 521

| T 1.2
={% [2.289 9-?.62 + j ] 5 dp] = 0-0155

5e2l

and because of the foregoing remarks about 2 (x,y,4), a large fraction
of the value of the first members of the right hand sides of (7.1h) and

2l




(7.15) is contributed by the integration over the region determined by
(7.18) in the case r = 3. For r = ), the factor (7.17) exceeds unity in
the region determined by

X=m 2 ¥y 2 Zem., 2
-1
(7.19) & 9 +<_—a-32)<6.96

and is less than unity elsewhere. In view of the remarks made about
i‘z(x,y,z) and since '

oz 2 g 2
-1 ED D
1l 2

1 o .
o 3 dx dy dz = 0,073
(2n)'?2010203 ’
X, 2 yemy 2 gem, 2
ChH + SD + (2) >6.5
1 2 3

by far most of the contribution to the first member of the right hand
sides of (7.14) and (7.15) comes from the integration over the region
determined by (7.19). The situation is similar for r = 3.5 or any other
value of r between 3 and ). Moreover, in the neighborhood of the mean
the contribution to the first member of the right hand side of (7.l5) is
from 18 to 32 times the contribution to the first member of the right
hand side of (7.1}) for values of r between 3 and L. Conseqently, in
all practical cases Va.rII < V'arIII.

Since the computing times and memory requirements are about the
same order of magnitude for the three random sampling integrating pro-
cedures the .smallest variance for the same number of sampling points is
the deciding criterion, especially in view of the fact that, in order to
achieve the same accuracy with the methods with higher variances for”
the same number of sampling points, more points, and hence more computing
time, are needed, Therefore, RSIP-II is recommended and was actually
run on ORDVAC.

The two systematic mumerical integrating procedures will be con-
sidered next.

In SNIP-I, using volumes 6o's, 7o's, and 80's on an edge and

choosing h3, 53 s and 63 points at the centers of equal volume elements
whose sides are parallel to those of the large volume, the kill proba-
bilities were found to be in fair agreement; the variations were
approximately the same as the root mean square relative errors in the
random sampling procedures, However, the agreement among the blast
kills was poor; this was apparently due to the fact that the points
chosen lie in planes parallel to the plane of the wings of the air-
plane and are separated by quite a few feet thus giving a poor sample
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of points in the blast regions., Tried.out in a few cases with
analytically integrable integrands as well, SNIP-I gave pocrer results
than SNIP-II. Therefore, SNIP-I is not recommended over either the
random sampling procedures or SNIP-II, even though its computing time
is about two-thirds that of the random sampling procedures for the same
mmber of points, SNIP-I is also slightly longer than SNIP-II in
computing time. '

In SNIP-TI h3 s 53 s and 63 points wers chosen spaced as indicated
in the previous section; these were run for all five sets of o = (01,02,63).

For the trials using 4> points a majority of the results were within the
observed standard deviations of the means in RSIP-II and no resulis were

in bad agreement with those of RSIP-II. The results of the trials using 5°

and 67 points were very well within the observed standard deviations of
the means in RSIP-II in almost all cases, Furthermore, the results using

53 and 6° points agreed very closely with each other, in several ex-
tremely good cases agreeing to within three or four units in the third
significant figure. In general, the differences between the results

using 53 and 63 points were about half, or less, the observed standard
deviations of the means in RSIP-II using averages of 200 trizls. These
results are taken to indicate that the probabilities obtained by SNIP=-II
using 125 burst points are better than those obtained by RSIP-II using
200 points, PFurthermore, the computing time for SNIP-II is about 1.l
minutes for 64 points for each set of ¢'s, about 2,2 mimutes for 125
points for each set of ofs, and about 5 minutes for 216 points for each
set of o's, while in RSIP-II about 4.0 minutes are required for 100
points for each set of o's. The values quoted were actually timed; for
the smaller o's the blast effects were higher and less time was needed
because the loops involving the determination of kills by destruction
of components were omitted for mamy points but the times were higher
whenever the blast effects were low for the converse reason. The
results of these investigations indicates that for one-missile en-
counters SNIP~-II is recommended over SNIP-I and the random sampling:
procedures. _

1I.8 Basic Logical Flow Chart.

The procedures discussed in the previous sections are parts of
the basic program whose logical flow chart is approximately that given
in Fig. 3 and which we now describe briefly.

Lot n be the index of a burst point ard M be the total number
(uswally 100 for the Lotto method) to be used in the computation of I.
Iet j be the index of the type of vital component and J be the total
number of types. Let 1 be the index of a component of which there will
be I;] of type }. Thus, Ci j is the i-th component of the j-th type,

9

1=, j=J.
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Initially n is set equal to l. Then a burst point P is produced
as a triplet of numbers (x_, ¥, %, ) generated by either “ra.ndom"

sampling or by systematic methods as described in II.6, II.7, and the
Appendix, Then it is determined whether or not the po:l.nt is inside at
least one of the ellipsoids, the sum of which determines the blast
region. If the point is within the blast region, then in the register
reserved for the integrands, f(x,y,2),a 1 is stored for the proba.bll:l.ty
of kill from a turst at P ; otherwise, the probability of kill is deter-

mined from the probabili_..ty of kill due to fragments as follows.
We begin with determining the probability of destroying the first
component of the first type by fragnents from a burst at P ; thus,

initially, the index of the type, j, is set equal to 1 and i is also
set equal to 1. Then, using the formulas of II,}, it is determined
whether C, ,j 18 1in the conical spray regions (See Fig. l.). If it is,

then it is determined whether or not C 1,3 is shielded by any of the K
ellipsoids, K If C is not sh:.elded by .any of the K ellipsoids
then, using vulnerab:n.l:l.t.y data and the distance between C 1,3 and P
one computes and stores the probability of destroying C by fra.g-

‘ments from P . Now, if i< Ij’ i.80y not all component-s of type 3

have been exam:.ned, i is replaced by i + 1 and the loop (or an alter-
nate one to be described below) is repeated for Gi 1,3 If, on the
!

other hand, i = I then one determines whether or not the number of

unshielded vital components of type J is sufficient for a fragment
kill from P o« If it is, then one computes from combinaterial formlas

and stores the probability of a kill due to destruction of type J
components by fragments from Pn' If it is not, then this probability

is zero and 0 is stored.

If, on the other hand, G 1,9 is not in the Spray region or is

shielded by one of the X elllpsoids then a 0 is stored for the proba-
bility of destroying C j with fragments from P Now, if 1< Ij y
,

the component Cl +1,3 replaces C 1,3 fer a tour t.hrough either this 1oap
or the above deacribed loop and, if i = Ij and j < J the procedurs is

repeated with j + 1 replacing j untidl 3 = J» Then, using the stored
probabilities of obtaining kills by destroying sufficient numbers of
each of the different types of components in standard combinatorial
forrmlas, the probability of a kill due to fragments frcnn P is cted

and stored in the fegister reserved for £{x,y,z).

Thus, at this stage we have in the register for i‘(x, ¥s z)
the probability of a kill from a burst at P n? which is either 1 ﬁ :|.'t.

is a blast kill or less if it is a fra.gment. kill. This procedure is
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repeated until n = M, each time accumulating f(xn, Yo zn) in the same

register, Then, multiplying this sum by the proper constants (Since I
is a probability integral and since different methods of integration may
be used some rormalization is necessary.), we obtain I, which is then
printed and the program halts.

Many things have not been included in this flow diagram for the
sake of brevity amd because the special demands of each program intro-
duce details that vary from problem to problem, Segments of this flow
chart have been amplified in Fig, 2. Things such as determining and
printing separately the probabilities of kill of wvarious camponenits have
been omitted since it is not difficult to see how they could be in-
corporated in this program (and actually have been in several problems
solved.- }

III. CONCLUDING REMARKS
III.9 General Hemarks on the Methods and Generalization,

It takes about ten days using the Lotto method by hand to produce
the firing record tables and final probabilities for five different sets
of variances in the trivariate normal distribution for the burst point,
Machine time on URDVAC, which included printing time and time of input
from IBM cards, to produce with greater accuracy than in the Lotto
method the same data exclusive of the firing record tables varied from
3.2 to 3.8 minutes using SNIP=IT with 125 points and from about 5 to
5.5 minutes using RSIP-II with 100 points, The variations within each
method were due to the variations in the number of times the program had
to investigate fragment kills (i.e., when the burst point was not in the
blast region), the fragment kill loop in the program (See Fig. 3.) being
much more camplicated than the blast kill loop. RSIP=I (the Lotto
method on the machine) would take slightly longer. However, this does
not include coding and code-checking time, which took a few weeks,
Nevertheless, since it is foreseen that the problem is of a recurring
type, this time is considered as initial overhead as the original
formlation of the Lotto method and construction of models must also
have been., For subsequent re-runs of the problem with different initial
data it is not necessary to repeat the coding; only a small amount of
time is required.

An additional advantage in accuracy in the ORDVAC solution over
the Lotto method appears in the consistency of the decision as to when
the burst is in the blast region. In the Lotto method the operators
determine by ‘sye whether or not a burst point is in the blast region,
the doubtful cases to be resolved by the use of mathematical formmlas;
but for psychological reasons these seldom occur, (Mr. King has
suggested that the placement on the model of a wire mesh form outlining
the blast region would eliminate this indeterminacy in the hand method.)
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On the other hand, in the formulation of the problem for ORDVAC the
boundary surface of the blast region is represented by a_mat.hqmatical
surface of second degree such that simple discriminations on the sign of
a quadratic form definitely determine whether or not the burst is inside
the blast region, :

The firing record tables in the Lotto method have an advantage in
that a change in kill criteria does not mean that new tables must be
made. With the already made tables within several hours new probabllities ’
can be computed, Furthermore, the acquisition of large mumbers of
firing record tables represent large amounts of data which can be, and
have actually been, used to get the probabilities of kills in engage-
ments involving several missiles. (Of course, this assumed that the
curmlative damage due to bursts from different missiles on a component
is not enmough to destroy the component unless the damage inflicted by
at least one of the missiles on the component is sufficient to destrog
it. This would also be an assumption of most practical fornrmlations
The former advantage can be offset somewhat in the (RDVAC because of the
short running timés and of the few hours necessary to produce a tape or
cards modifying the imput kill criteria. On the other hand, no formu-
lation for several missiles has been attempted for URDVAC and, there-
fore, no practical comparison between the methods of RSIP-I and
RSIP-II are now possible; but it seems likely that for a large mumber

‘of missiles RSIP=-I would be preferred over RSIP-IT,

Farther generalizations of some sort in the.problem seem to be
possible in the formulation for the ORDVAC solution. A somewhat mote
general angular distribution of fragments is poss:.ble ags well as are a
distribution of directions of approach of the missile and some con-
sideration of the directional effect of blast from an exploding movi.ng
missile. Clearly, the constants in the formulas for the probabilities ,
of destruction of components by fragments ave also possible t¢ be changed s
with little delay in coding or camputing, :

It should be remarked that recently thers has been added the
logical "and" to the list of automatic CRDVAC orders. This permits
the rapid use of the more general method deseribed first in II.5,.based
on the partial ordering (=), for determining whether a certain com- '
bination of camponents dest-royed constitutes a kill or not. The method
as originally ceded not using this order regquired a very large amoung
of time simply for shifting in order to make the digit-by-digit com-
parisons necessary in determining whether or not the relation (=) is
satisfied. The elimination: of this shifting makes the time required
about ;he same as that required for the laas ‘general method descr:l.bed
in IL.S.

The authors wish to acknowledge gratitude to Mr. F. G K:Lng For:
many preliminary discussmns acquainting them with the problem, to - :
Dr. Saul Gorn for helpful suggestions, in particular, in the geunetry o
of the probléem, and to Mri Frank Lerch for machine information which -
helped the authors crystallize the mathematical formulation of the ,
problem. b

30




APFENDIX
10, The Generation of the Random Numbers.

The so-called "random" numbers used in the random sampling pro-
cedures are not random in the strict mathematical sense of the word, but
rather they possess to some degree only some of the properties of truly
random rumbers. Density, frequency of occurence of certain digit com-
binations in certain positions, and contingencies were some of the
prorerties investigated and compared with the theoretical behavior of

truly random numbers by means of ‘Xz tests. More properly these random
numbers which are generated in a completely deterministic manner are
sametimes called pseudo-random numbers, but for economy of expression
in this report they will still be called random rmmbers.

The following method of generating the random numbers directly in
our problems is similar to the procedure described by D, H. Lehmer
(p. 1kk [3] ) and to the procedure devised by Olga Taussky-Todd for
SEAC. It produces sequences of numbers approximating unifoermly dis-
tributed random numbers in (0 ,1) and has the advantages of requiring
very few orders and of producing sequences having a very long period

(237) and satisfying very well certain so-called random mmber tests,

Let Po be an arbitrary odd number satisfying 1 = p <= .239 -1,
Define

Pney © 512 Py (mod 239)’ n=0,1,2, «o,

and such that 1 €p < 239 - 1 for every n. Then define
I'n = 2-39 pn,' n= 0’ 1’ 2, ces o

The sequence {rn‘& is the desired random mumber sequence whose distri-
bution is very close to the uniform distribution in (0,1). On (RDVAC
this is simply achieved by mltiplying r_ by 513 using double precisipn,
i.e.', using two registers (78 binary places) for the product, and in
such a marmer that the integral part of 513 r, falls in one register
and the fractional part, which is rhel? falls in the other and is
ready to be used In the problem as well as to generate The2e

The modulus 239 was chosen because the UBDVAC register has 39
binary digits and the obtaining of the remainder of the division of
513 by 237 is achieved immediately by omitting the first register in
the double precision division. The multiplier 5]“3 was chosen because
it does not exceed 2°7 and tmms 513 p_ fits entirely in the two
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registers reserved for it; on the other hand, 513 has a reasonable
selection of digits and is large enough for Prel ad p, not to appear

correlated, Furthermore, in order to insure the longest possible
period with this sort of scheme the multiplier should be congruent to
1 with respsct to the modulus l, which requirement is satisfied by 5

It is perhaps worthwhile to remark that this process is easily
generaliged for any high-speed digital computing machine. For a machine
whose registers contain n digits to the base B, 'l:.he modulus shcruld be B
instead of 237; the mltiplier used in plade of S should be large but

less than ﬁ and if p = 2 the mltiplier should be congruent to 1 with
respect to the modulus lj in order to insure the longest possible period

(pn-Z) If p #£ 2, a special analysis for each machine is necessary to
determine to which residue classes the mltiplier should beleng.
Using elementary numberetheoretic methods, one can show that this

procedure on ORDVAC will produce a succession of exa.ct],yf37 different
odd numbers, Py and will then ¢ontime to repeat the seguence over

again. This impl:n.es that exactly half of all the odd numbers in the’
interval 1< p < 239 = 1 will appear in each period; the particular

set of odd mumbers appearing will depend on the particular choice of Po*
Furthermore, one can easily show that, if, for some n, P = Ps then

there exists no k such that Pt
the two sets of odd numbers which may be produced interlace.

= p + 2 in the same sequence: thus,

Using the iterative procedure p ., = 517 Py (mod 2h2) » Py =1, to

produce pseudo-random numbers on the SEAC, the National Bureau of
Standards made some fairly extensive and exhaustive tests whose re-
sults indicated very good agreement with what could be expected from
truly random numbers. Since our method is very similar and their re-
Sults were so good, not so extensive test.s were performed on the
sequences produced on CRDVAC.,

With v = 1 - 2737 and r_ = 05478126193 two sequences of LO96

numbers were produced. The mumber of zeros in each of the following
places of the binary representations of the mumbers of the sequences:
2nd, 3rd, Sth Tth, 1lth, 18th, and 2lth, was counted for each sequence.

Values of 'x = 2,87 and '12 = 7,48 respectively were obtained. These

values are exceeded by a variable with seven degrees of freedom with
probab:.lit:.es of 0,82 and 0.39 reSpect:.vely. The number of occurrences
of 10 in the L4th and 5th and in the 15th and 16th places of the binary
representations of the mumbers in each sequence was counted, giving

&
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1067 and 1057 for the Sequence beginning with r_ = 1 - 2% and 1060
and 1035 for the sequence beginning with r, = 0.5478126193. The

probability of random fluctuations from 102}, the expected mumber of
such occurrences, exceeding 43, the largest of the above deviations, is
0,50 using the central limit theorem: for |j096 trials. The mmmber of
occurrences of 1011 in the 7th through 10th places of the binary repre-
sentation of each mumber was counted for each sequence, giving deviations
of }y and 18, respectively; the probabilities that such deviations would
be exceeded in truly random sequences are 0.95 and 0.78 respectively.

An investigation of the density of the sequence of 4096 mumbers
produced from r, = 1 - 2737 was made, Dividing in the interval into
200 emal sub~intervals a value of‘Xi of 199441 was obtained; this is

exceeded by a 'f variable with 199 degrees of freedom with a probability
of 0.,48. A different division of the same sequence into 10 equal sub-

intervals gave 'Xﬁ = 6,95, which is exceeded by ‘a‘.'xa variable with 9

degrees of freedom with a probability of ©.58. With the ‘same division
into 10 eqal sub-intervals a contingency table for r and r ., and for

r, and T, +3 producing’xi = 38,03 and’x_ﬁ -5‘92.33, respectively, which are

exceeded by Xz variable with 99 degrees of freedom with probabilities
of 0,78 and 0,67 respectively. On the basis of these tests and the
modest accuracy requirements in our problem this procedure was accepted
as a method of generating seguences of pseudo-random mumbers approxi-
mating sequences of uniformly distributed random mumbers in (0,1).

Furthermore, a '12. test was made by F, G, King on the values obtained for
the probability of a blast kill in his reqested 50 runs of the problem
using 50 independently randomly chosen ro's and he found the mmbers

acceptable for the purposes of' the problem. ,
To produce the pseudo-random normally distributed mumbers required -
in the random sampling procedures used in the problem an elementary and

well-known device was used. If Y is a uniformly distributed random
variable and if F(x) is a strictly monotone increasing cumilative dis-

tribution function whose inverse is F';(x), then X = F"X(Y) 4s a randam
variable with cumlative distribution function F(x). Thus, for our
purposes a simple approximation to the inverse of the normal distri-
bution was used; it is based on the formla approximately inverting

t2

oo ;L

given on sheet 67 of Form (15)a [1].

If Y is a pseudo-random mumber approximately a uniformly-distri-
buted rumber in (0,1) and

Z2ey/-2 log, ta-N-210
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then

a +a 2 ,
o~ 71 — |o sien (Y - .5)
1+b) 2 +b,2

Xem+ |2 -

is a pseudo-random normal variable with mean m and variance 02. The
constants are given by

a_ = 2.30753 by = 0.99229
a; = 0.27061 by = 0.04481

This procedure of converting uniformly distributed random numbers to
normally distributed random numbers requires about 80 words of storage
and takes about one-third of the computation time. F. G. King has
pointed out that a sum of eight, or possibly even four with a correction
factor, uniformly distributed random mumbers as would be a sufficiently
close approximation to a normally distributed random number for the :
purposes of his problem. It, furthermore, would require lsss storage
and, although more random mumbers need to be generated, would require
less computing time. Thus, under strait circumstances it would be ad-
visable to use this scheme rather than the one now coded. One minor
consideration is necessary; more extensive testing of the pseudo-random.
sequences is needed, there being several times more rardom numbers re-
q:L:L'l.'ed.

This latter procedure for obtaining normza.ll:,ir distributed numbers from
uniformly distributed ones was coded in a later revision of the problem.
It used & sum of S or 6 uniformly distributed numbers properly normelized
and with a small eorrection to improve the talls of ,the distribution., The
time saving in the rumming of the problem j”
amounted to about 30% to LO% of the previous
time., This is due to the elimination
of the square root and logarithm routines
needed in the former procedure.

Ms Lo COSA
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